User Tools

Site Tools


electrical:solar:car

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
electrical:solar:car [2023/09/21 11:04]
frater_secessus [$300]
electrical:solar:car [2024/01/04 12:56] (current)
frater_secessus [performance]
Line 131: Line 131:
 This is a relatively large setup for a cardweller, but at this point we get to leverage the economies of larger batteries and used panels.   This is a relatively large setup for a cardweller, but at this point we get to leverage the economies of larger batteries and used panels.  
  
-  * 200w [[electrical:solar:panels#panel_voltage|higher-voltage]] used panel, mounted between luggage rails, ~$75+  * 250w [[electrical:solar:panels#panel_voltage|higher-voltage]] used panel, mounted between luggage rails, ~$80
   * [[electrical:12v:b2b#kisae|kisae DMT1230]] 30A MPPT+DC-DC, $225   * [[electrical:12v:b2b#kisae|kisae DMT1230]] 30A MPPT+DC-DC, $225
   * [[https://amzn.to/3EyQhKG|100Ah self-heated LiTime LiFePO4]] (or similar), $440   * [[https://amzn.to/3EyQhKG|100Ah self-heated LiTime LiFePO4]] (or similar), $440
   * small PSW inverter like [[https://amzn.to/48aWp9u|the Bestek 300w]], up to 500w would be comfortable for the battery.   * small PSW inverter like [[https://amzn.to/48aWp9u|the Bestek 300w]], up to 500w would be comfortable for the battery.
 +
 +Dropping to 50A LFP would decrease cost to ~$510. All numbers below would stay the ~same.((alternator should be limited to 25A charging, so 166Wh instead of 200Wh harvested))
  
 Actual power harvest would vary depending on the amount of driving (alternator), and [[electrical:solar:pvwatts|location/season]] (solar).  Let's assume 30 minutes of driving each day and middling latitudes like Salt Lake City.  Actual power harvest would vary depending on the amount of driving (alternator), and [[electrical:solar:pvwatts|location/season]] (solar).  Let's assume 30 minutes of driving each day and middling latitudes like Salt Lake City. 
  
-  * summer (June) - ~200Wh alternator + 1,186Wh solar = **1,387Wh/day** (1.73Wh/$) + 
-  * winter (December) - ~200Wh alternator + 335Wh solar = **535Wh/day**+==== performance ==== 
 + 
 +Solar, conditions described above 
 + 
 +  * summer (June) - ~200Wh alternator + 1,483Wh solar = **1,683Wh/day** (2.10Wh/$) 
 +  * winter (December) - ~200Wh alternator + 401Wh solar = **602Wh/day** 
 + 
 +loads 
 + 
 +  * DC ~50A (650w)((solar might provided another 213w under optimal conditions, allowing loads up to 663w without exceeding LFP's typical 0.5C sustained discharge spec)) 
 +  * AC (inverter) ~40A (520w)
  
 ===== $650 ===== ===== $650 =====
Line 146: Line 158:
  
  
-  * summer (June) - ~130Wh alternator + 1,186Wh solar = **1,317Wh/day** (2.03Wh/$) +  * summer (June) - ~130Wh alternator + 1,483Wh solar = **1,613Wh/day** (2.03Wh/$) 
-  * winter (December) - ~130Wh alternator + 335Wh solar = **465Wh/day**+  * winter (December) - ~130Wh alternator + 401Wh solar = **531Wh/day**
  
  
-===== $410 =====+===== $480 =====
  
-Simplifying with PWM controllers and relays instead of DC-DC.  1/2 the battery, so ~1/2 the alternator charging+Simplifying with PWM controllers and relays instead of DC-DC.  1/2 the battery, so ~1/2 the alternator charging.  Price doesn't go down much because we are paying $1/watt retail for new panel.  
  
-  * 50A LiFePO4+  * 50A LiFePO4, $160
   * combiner or VSR for alternator charging - $50   * combiner or VSR for alternator charging - $50
   * 2x 100w panel - $200   * 2x 100w panel - $200
Line 160: Line 172:
   * small PSW inverter like [[https://amzn.to/48aWp9u|the Bestek 300w]] - $60     * small PSW inverter like [[https://amzn.to/48aWp9u|the Bestek 300w]] - $60  
  
-Same assumptions as the above+ 
 +==== performance ==== 
 + 
 +Solar, same assumptions as the above 
  
   * summer (June) - ~65Wh alternator + 488Wh solar = **1,041Wh/day** (2.54Wh/$)   * summer (June) - ~65Wh alternator + 488Wh solar = **1,041Wh/day** (2.54Wh/$)
   * winter (December) - ~65Wh alternator + 284Wh solar = **349Wh/day**   * winter (December) - ~65Wh alternator + 284Wh solar = **349Wh/day**
  
 +loads
  
 +  * DC ~25A (325w) 
 +  * AC (inverted) ~20A (260w)
 ===== $300 ===== ===== $300 =====
  
 Half the solar brings the cost (and harvest) down: Half the solar brings the cost (and harvest) down:
  
-  * 50A LiFePO4+  * 50A (640Wh) LiFePO4
   * combiner or VSR for alternator charging - $50   * combiner or VSR for alternator charging - $50
   * 100w panel - $100   * 100w panel - $100
Line 177: Line 195:
   * small PSW inverter like [[https://amzn.to/48aWp9u|the Bestek 300w]] - $60     * small PSW inverter like [[https://amzn.to/48aWp9u|the Bestek 300w]] - $60  
  
-Same assumptions as the above+==== performance ==== 
 + 
 + 
 +Solar, Same assumptions as the above
  
   * summer (June) - ~65Wh alternator + 488Wh solar = **553Wh/day** (1.84Wh/$)   * summer (June) - ~65Wh alternator + 488Wh solar = **553Wh/day** (1.84Wh/$)
   * winter (December) - ~65Wh alternator + 142Wh solar = **207Wh/day**   * winter (December) - ~65Wh alternator + 142Wh solar = **207Wh/day**
  
 +loads
  
 +  * DC ~25A (325w)
 +  * AC (inverted) ~20A (260w)
 ===== $110 ===== ===== $110 =====
  
Line 190: Line 214:
   * 10A single stage PWM charger - $15   * 10A single stage PWM charger - $15
  
 +==== performance ====
  
-Same assumptions as the above+Solar, same assumptions as the above
  
   * summer (June) - 488Wh solar = **488Wh/day** (4.44Wh/$)   * summer (June) - 488Wh solar = **488Wh/day** (4.44Wh/$)
   * winter (December) - 142Wh solar = **142Wh/day**   * winter (December) - 142Wh solar = **142Wh/day**
  
 +loads
 +
 +  * DC ~10A (130w)
 +  * no AC (inverter) loads
  
electrical/solar/car.1695308691.txt.gz · Last modified: 2023/09/21 11:04 by frater_secessus