This is an old revision of the document!
A b2b (or dc-dc) charger is a type of isolator that converts alternator voltage to specific voltage setpoints instead of just passing it through as a relay might.
Because of their electronic nature they are limited to a rated amount of current1) which can protect your alternator from damage. This can be especially important with Lithium and AGM batteries that can demand huge loads from the alternator when discharged.2)
Charger throughput is generally limited to 20-30A3) since higher rates would dictate $$$ internal components, whereas plain isolators might pass as much current as the alternator, battery, and wiring could handle. This isn't as big a limitation as it might seem since lead-acid current acceptance drops substantially throughout Absorption, and lithium owners often limit charging to C/5 for maximal longevity.
Untested theory: b2b chargers might work well beside normal isolators; this is essentially the $$$ CTEK SmartPass setup described below.
In addition, even DC-DC chargers can fail to charge lead batteries fully. Lead-acid batteries require two things to get fully charged:
DC-DC chargers are often triggered by the IGN circuit, but voltage sensing can be added to that circuit. Others are triggered by chassis-side voltage alone.
DC-DC chargers typically do not support self-jumpstarting, although the need for jumpstarting may be reduced with combo units (below) that maintain the starter battery from solar power.
Dual-input (alternator + solar) units make charging source decisions that are sometimes quirky. See below.
DC-DC chargers come in different ratings (10A, 40A, 60A, etc) which increase significantly in price as the rating increases. In general, the stated rating is on the output (battery charging) side. Some exceptions do exist; Sterling units are rated on the input (power taken from the alternator).6)
The DC-DC should be big enough to meet your charging targets given the amount of driving you do and the contributions of other forms of charging. It should be small enough that the alternator can provide the power continuously.
Note that bigger is not always better; different battery chemistries and capacities accept current at different rates. Buying more charging capacity than the battery wants7) is a waste of money. Buying more charging capacity than your alternator can deliver constantly can overheat/damage the alternator.
Assuming a 100Ah bank:
Isolated DC-DC chargers have negative terminals output side (battery bank) “galvanically isolated” from the input side (alternator). It is not needed for most use cases:
Generally speaking, one only needs to isolate the negatives when the installation does not share a common negative return path, such as may be the case on many fiberglass boats that don't have a chassis and may not have a common grounding bus to which all their battery banks connect. – Justin Cook10)
But note that a trailer does not always have common grounding:
Galvanically isolated is a nice thing to have, especially if you are charging house batteries in a trailer from the tow vehicle engine. The issue relates to how the house battery is grounded to chassis ground when the tow vehicle is disconnected. All in one RVs and vans don't have this issue (probably) so I would not expect them to need galvanic isolation. (emphasis added) – HaldorEE11)
Combining the solar charge controller and DC-DC charger in one unit can have benefits in cleaner/simpler installation, starter battery maintenance from solar, and perhaps cost over separate components. The downsides are less configurabilty12), single points of failure, and limited options on solar input.
Combo units typically have much lower maximum panel input voltages (as low as 23v) than a standalone charge controller would (60v - 150v). This limits the solar configuration in a few ways:
The most common b2b charger with 'dwellers is the D250 series, all of which are 20A smart chargers with integrated MPPT:
House and starter batteries are combined when the starter battery holds >13.1v for 5 seconds.13) The batteries are isolated when the starter battery is “<12.8V, for 10 sec… or service battery voltage > starter battery voltage”.
Note: the CTEK D250SA14) panel voltage (Vpanel) maximum is 23v.15) There are user reports that the unit is repairable after overvoltage or polarity damage.16),17)
The MPPT charger will charge the house battery at up to 20A. CTEK specifies 50-300W of panel, though the 23v Vmax limits the unit to nominal 12v panels. Note: polycrystalline panels may be more useful here, as their Voc should be a bit lower than mono.
The 250-series will charge simultaneously from solar and alternator up to the 20A output limit. No details are given in the manual.
The SmartPass accessory adds up to 80A-120A (see below) of alternator charging to the D250's output under certain conditions for a theoretical charging max of 100A-140A, depending on version:
The Smartpass is effectively an isolator (details here), which means it can only charge the house battery at alternator voltage.
The smartpass also adds a form of self-jumpstarting.
The D250SA trickle charges the starter battery from a solar panel at intervals of 3 seconds if the service battery is fully charged.20)
Note: a 30A combo model is also available
This device's behavior regarding solar+alternator charging is widely misunderstood.
The 50A dual-input charger prefers to charge by solar if possible, up to 50A. If it cannot meet charging demands alone and the engine is running it will will charge up to 25A by solar and 25A by alternator:
Using the above information and a theoretical scenario where we have 15A22) of solar charging available during the daytime, an alternator capable of delivering 50A, and a bank able to accept 50A of charging:
Behavior is the same for the 30A model (pdf) except 15A + 15A vs 25A + 25A above.
Note: some have reported better alternator charging performance with the D+ (smart alternator) wire connected, even with plain alternators. Oversizing cables from the alternator may also help. 23)
If the service battery is in float charge stage, the starting battery will be charged at the same time. The charging voltage is limited at 13.8V. The charging amperage is limited at 25A.24)
Kisae makes a DMT1230 DC-DC charger 30A charger with 50v MPPT input and 16v alternator input.25) They also make a 50A model (DMT1250), which charges up to 50A by alternator. Some sources give 50v as max input; check the current manual for your device. Both models list specifiy 500w of panel with up to 20% overpaneling (600w). The Kisae has a minimum solar input voltage of 14.5v. It can limit current output to a setpoint configured by the user, and drop to float based on trailing amps.
Both the 30 and 50 are limited to 30A of solar input current.26). They estimate this will be ~500w of actual input wattage27), with overpaneling allowed to 600w.
Given MPPT's DC-DC conversion we would expect >30A on the output. They do give an example of 500W practical input max with nominal 12v panels. If we use their 97% claim it would pass up to 485W. So if it charging at 13.0v we might see something like 37A. – secessus
Customer support is generally regarded as excellent.
By default, when the alternator input terminals detect at least 13.2v the charger will be switched to alternator charging.28) The unit can be set to prefer solar charging instead.
The Kisae does not appear to maintain the starter battery.
This unit also seems to be sold under the Ring and Merlin brands.
Redarc “dual input” DC-DC chargers have integrated MPPT controllers. They appear to do both buck and boost conversion as solar input voltage is 9v-32v.29)
These units do not appear to maintain the starter battery from solar. Redarc does document how to insert a switched relay in between the starter and aux batts to self-jumpstart.
Ring makes a 30A DC-DC charger with 50v max input MPPT. (manual)
Note: the Ring appears very similar to the Kisae (above).
The Sterling BBS1230 Pro Batt Ultra is a 30A boost/buck 30A charger. The solar input max is 31V and 16A. Alternator input voltage is 11v-20v and 30A. Both the solar and b2b charging can be turned off separately.
The charger charges only from alternator when engine is running:
When your engine is running, the BB aspect of the BBS charges. When the engine / ignition is off, the solar charger works. They do not work simultaneously.
the manual for the pre-2022 version incorrectly claims the unit maintains the starter battery.
The Votronics Triple is DC-DC, MPPT solar, and shore power charging from 110v-230v, 45Hz-65Hz.
The naming convention is shore power amps32) / DC-DC amps / solar wattage
Max solar input voltage for all models is 36Voc. Minimum panel wattage is 50w-60w depending on model.
Solar can be prioritized over shore power charging. The Solar Operation section of the manual suggests that alternator charging has priority over solar. The default priority appears to be:
The starter battery will be maintained at ≤5A by solar or mains charging. Max input voltage is 32v.
Wagan sells 25A and 40A DC-DC chargers with MPPT inputs. The 32v max input and other specs suggest internals may be similar to Redarc units (see above).
The Sterling Pro Batt Ultra series can be configured to exact setpoints. The BB1260-12 is a 30A example and costs about $50 more than the D250S above.
The BB1240 has a starter battery maintenance (reverse charging) feature. This might be true for all the 2022 redesigns.
DC-DC chargers in 20A, 40A, and 60A output. Switched on by ignition circuit on the D+ port.33) DIP switches for battery type, Vabs and Vfloat. manual (pdf) teardown Note: some versions of the manual may have a typo.
These chargers appear to have a 3 hour absorption duration. This is usually insufficient for lead chemistries, but still longer than the 2 hour duration of the DCC series above. From the manual:
By default, absorption will not exceed 3 hours to prevent overcharging.
60A DC-DC with different form factor and a configurable USER profile. Important differneces from teh 1212 line above:
manual (pdf)
Redarc makes DC-DC chargers in 20A and 40A sizes.
They have modes for “AGM, gel, calcium content, VRLA and standard lead acid batteries”.
Victron makes several DC-DC chargers, some of which are configurable by bluetooth. 12v examples:
See information on isolated v. non-isolated chargers above.
Be aware the physical jumpers may have a specific orientation.
Bogart's SC-2030 can work as a DC-DC charger as well as a PWM charge controller.
Votronics makes a range of standalone DC-DC chargers
The chargers can be activated by D+34) wire35) and disconnects <11.2v after 30 seconds.
When sensing voltage it connects at >13.3v, reduces charging at <13.0v, and disconnects at <12.9v after 30 seconds.36)
The starter battery will be maintained with ≤1A current when lead banks are >13.1v, and when lithium banks are >13.5v.37)
Charging a 24v bank from 12v alternator is possible but gear selection is relatively slim.
Victron makes 12/2438) DC-DC chargers with inputs 8-17v and outputs of 20-30v.
Also see the Votronics section above for their DCC 25A 1224 charger.
DC-DC chargers are typically rated on their output power, which means they can pull more than their rating from your alternator. This could be a consideration if you are running a small alternator and relatively big DC-DC.
Example: Relatively low chassis voltage, 13.4v. Relatively high charging voltage, 14.8v.39). 50A output @ 14.8V requires 57.98A from the alternator after DC-DC boosting and losses.
Carefully observe voltage input maximums on units with built-in solar charge controllers. If you will be in freezing conditions allow headroom to account for the effects of temperature on solar cell voltage.
Voltage-sensing units40) can misbehave when an undersized starter battery charger/maintainer is attached. For this example we assume a 10A maintainer and a 20A DC-DC charger.
The workaround is to either charge the house battery first or to buy a big enough starter battery maintainer to support both the starter battery and DC-DC charger loads.
DC-DC charger (B2B) options and general discussion on DIY Solar Power Forum.